

University of Wisconsin Madison 2010 SAE Clean Snowmobile Challenge

Design Presentation

Presented by:

Shawn Spannbauer Jake Mauermann

Design Considerations:

Market Survey

 Survey at Eagle River World Championship Snowmobile Derby

- Approximately 115 surveys
- Customers Want:
 - Trail Handling
 - Acceleration
- Historical Best Sellers
 - Ski-Doo Rev XP 600 SDI
 - Polaris IQ 600

Snowmobile Characteristic Importance Rankings (5 is most important)

Bucky 750 CFS How it Appeals to Snowmobilers

Ultra Quiet Increased Fuel Economy 20+ mpgge Flex Fuel Improved Acceleration Cruise Control Capable BAT+ Compliant

Electric Start 2007 FST LX Chassis 105 peak hp operating on E85

Dealer & Outfitter Perspective

University of Wisconsin SAE Snowmobile Team

- Sales
 - Cleaner/Quieter Performance Model
 - Better Fuel Economy, BAT Compliant
- Maintenance
 - Integrated Catalyst/Muffler Bolt-in Replacement
 - Plug and Play Flex-Fuel Intake/Fuel System
 - ETC, Grid Heater, Flex Fuel Sensor
- Novice Snowmobiler Operation
 - OEM Controls
- Rider Comfort
 - OEM Seat, Handlebars, Suspension, Reduced Noise

- Engine emissions from current snowmobile engines
- Ski-doo SDI system reduces two stroke emissions by 50%¹
- Stock Polaris FS engine meets 2012 Emissions Certification

Engine Selection

Snowmobile Engine Emissions Testing

	HC g/kW-hr	CO g/kW-hr	NO _x g/kW-hr
Two-stroke average (CSC 2009)	193.5	442.0	0.9
Arctic Cat 660 (4-stroke)	6.2	79.9	10.6
Polaris FS (4-stroke)	9.3	38.6	1.5

1: <u>http://www.ski-doo.com/media/2004_SOTY.pdf</u>

Engine Type	Four Stroke
Cooling	Liquid
Cylinders	2
Displacement	750 сс
Bore x Stroke (mm)	85 x 66
Ignition	Bosch
Exhaust	Single
Fueling	EFI
Compression Ratio	9:1

Turbo Charged Weber MPE 750 with Automotive Camshaft

Engine Control and Emissions Reduction

Engine Management

University of Wisconsin

Woodward/Mototron PCM555

Ratings: Automotive/Marine Environments -40° – 130 °C 18 g Shock Load Up to 3 Meters Underwater MATLAB/Simulink Engine Modeling MotoHawk Automatic Code Generation

Flex Fuel Sensor

University of Wisconsin SAE Snowmobile Team

Continental Flex Fuel Sensor

Reports ETOH Content & Fuel Temperature

Engine Calibration

- DYNOmite Water-Brake Dyno
- Horiba CO & CO₂ NDIR Analyzer
- Heated wide-band O₂ sensor
- Chemiluminescent NOx Analyzer
- Exhaust Thermocouples
 - Calibrated Spark Advancement
 - Calibrated Volumetric Efficiency within 1% of Stoichometric
 - 160 cal points
 - Increments: 500 rpm, 0.1 PR
 - Each within ±0.01λ (open-loop)
- Feedback from O₂ Sensor
 - Lean/rich target switching

Catalytic Emissions Reduction

University of Wisconsin SAE Snowmobile Team Improvements for 2010

- Lean/Rich Switching maximizes threeway catalytic efficiency
- Exhaust system re-designed to minimize weight, engine back-pressure and risk of pre-catalyst leaks

Manufacturer	W.C Heraeus GmbH		
Diameter	105mm		
Length	140mm		
Substrate	SuperFoil® Metal Honeycomb		
Density	600 cpsi (cells per square inch)		
Loading	Platinum 11.1 g/ft ³ Palladium 55.6 g/ft ³ Rhodium 8.3 g/ft ³		

Emissions Results

2010 Emissions Testing Results

Up to 98% reduction from stock

[®] Driveline Efficiency Testing

Track Length Comparison

University of Wisconsin SAE Snowmobile Team

- 128" track length standard on 2007 Polaris FST LX
- Tested 121" vs. 128" using electric snowmobile
- Found a 22% reduction in power required to drive at 25 mph when using 121"
- Overall weight reduction of 28.6 lbs.

- Tested same track studded vs. nonstudded
- Found a 4% difference in power required to drive at 25 mph
- This impact was weighed against the positive aspects of studs

Effect of Studs

Sound Testing

Sound Reduction

University of Wisconsin SAE Snowmobile Team

Engine

- Three Stage Exhaust System
 - Turbocharger turbine
 - Catalyst
 - Custom-Modified Muffler

Tunnel Stiffeners

Resonance of Tunnel

University of Wisconsin SAE Snowmobile Team

Total Sound Reduction

 Measured sound level of based on pass-by testing - SAE Standard J192

- J192 Limit 78 dBA maximum
- Stock Muffler 76 dBA
- Bucky CFS 72 dBA
- 60% Noise Reduction

Clean Quiet FAST University of Wisconsin SAE Snowmobile Team

Modifications

- Custom exhaust
- Mototron control system
- Electric Throttle Control
- Air intake heater
- Ethanol compatible fuel system
- Fuel oxygenation sensor
- Studded track
- Shorter, lighter suspension
- Chassis noise reduction
- Lightweight Drive Shaft
- Improved Idle Cooling

Questions?

Why Not DI2S?

University of Wisconsin SAE Snowmobile Team

Emissions Testing Modes

University of Wisconsin

Clean Quiet FAST

SAE Snowmobile Team

	Engine Speed (rpm)	Torque (N-m)	Power (kW)
Mode 1 (WOT)	5500	105.9	61.0
Mode 2 (85%)	4675	54.0	26.4
Mode 3 (75%)	4125	34.9	15.1
Mode 4 (65%)	3575	20.1	7.5
Mode 5 (idle)	1500	0.0	0.0

Customer Survey

Snowmobile Type Preference, Given Equal Price and Performance

Catalyst Specs

University of Wisconsin SAE Snowmobile Team

Manufacturer	W.C Heraeus GmbH		
Diameter	105mm		
Length	140mm		
Substrate	SuperFoil® Metal Honeycomb		
Density	600 cpsi (cells per square inch)		
Loading	Platinum 11.1 g/ft ³ Palladium 55.6 g/ft ³ Rhodium 8.3 g/ft ³		

Drive Shaft

