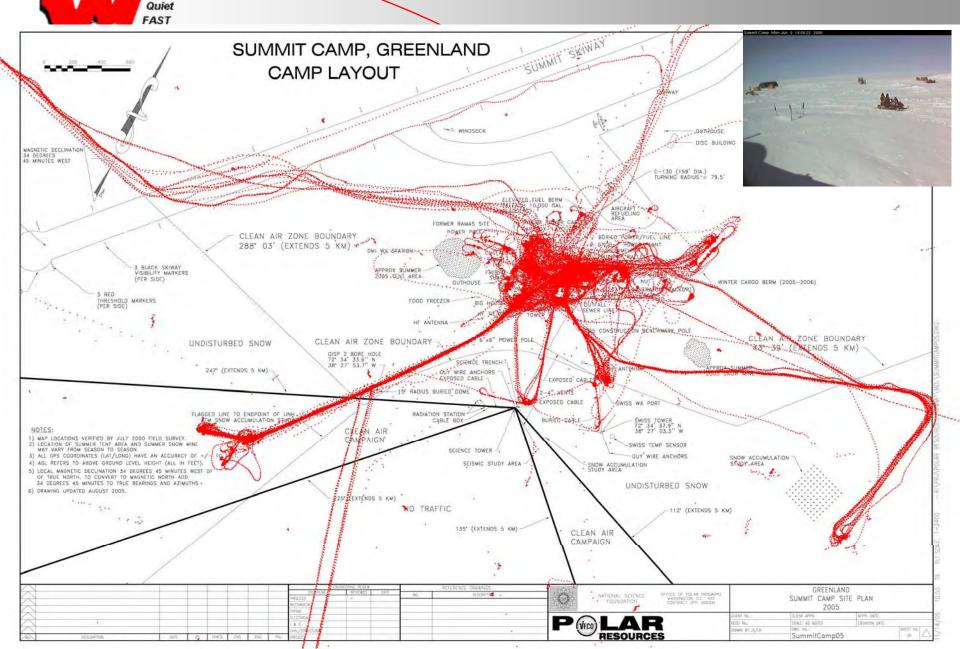


University of Wisconsin Madison

2009 SAE Clean Snowmobile Challenge

Electric Snow Machine Design Presentation

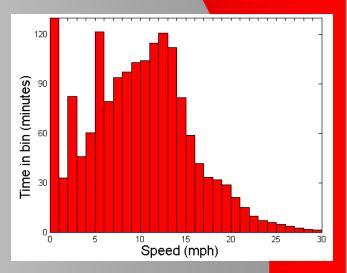


Presented by:

Jake Mauermann Nick Rakovec

Clean Quiet FAST University of Wisconsin	Desig	n Emphas	sis porator"
SAE Snowmobile Team Parameter	NSF Emphasis	CSC Emphasis	UW Emphasis
Range	Primary	Secondary (100 points)	Primary
Towing Capacity	Primary	Secondary (100 points)	Primary
Weight	Secondary	Secondary (100 points)	Secondary
Handling	Minor (safety only)	Secondary (125 points)	Secondary
Acceleration	None	Minor (50 points)	Secondary
Noise	None	Primary (300 points)	Secondary
Cost	Primary	Minor (50 points)	Secondary
Durability and Maintainability	Primary	Secondary (100 points)	Primary

Greenland Summer '08 Trial



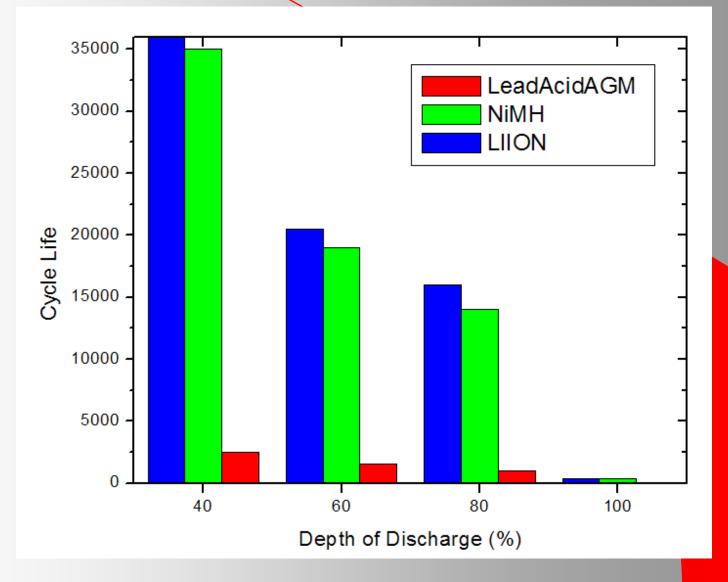
Clean

Greenland 2008 Summary

- Most trips are short
 - Typical trip: Big House or Balloon Barn to Sat Camp
 - 2.2 km (1.4 mi) round-trip
 - Trip length: (of 72 trips >0.1 mi in a ten day period)
 - 47 ≥0.5 mi, 14 ≥1.0 mi, 6 ≥2 mi, 3 ≥3 mi.
 - Longest trips 6 mi round-trip
- Total usage
 - 341 km (212 mi) in 57 days (4 mi daily average)
 - 26 hr of operation (non-zero speed)
 - Mean speed 13 km/hr (8 mph)
- Practical range
 - 5-10 mi with a 1500 lb towed payload
 - 2x-3x reduction from maximum unloaded range

Specific Design Goals

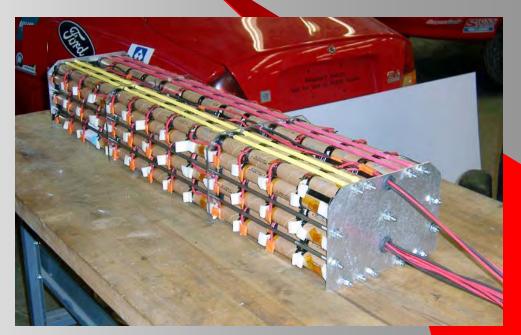
University of Wisconsin


SAE Snowmobile Team

Parameter	Competition Goal	UW Goal	UW Achieved
Range	≥ 16 km (10 mi)	≥ 32 km (20 mi)	20 km (12.4 mi)
Top Speed (ZE goal)	≥ 70 km/hr (20 mph)	≥ 140 km/hr (90 mph)	≥ 120 km/hr (76 mph)
Acceleration (150 m)	≤12 s	≤10 s	6.9 s
Emissions	Zero	Zero	Zero
Weight		≤ 340 kg (750 lb)	320 <mark>kg</mark> (709 <mark>lb)</mark>
Drawbar Pull		≥ 250 kgf (550 lbf)	250 k <mark>gf</mark> (550 lb <mark>f)</mark>
Noise (IC)	≤ 78 dB	≤ 60 dB	55 dB

Clean Quiet FAST University of Wisconsin SAE Snowmobile Team	Battery Selection		
Nickel Metal Hydride	Lead Acid	Lithium-Ion	
1.25 Volts/Cell	2.12 Volts/Cell	4.00 Volt <mark>s/Cell</mark>	
364 V → 291 Cells	364 V \rightarrow 172 Cells	364 V → 91 Cells	

Battery Selection



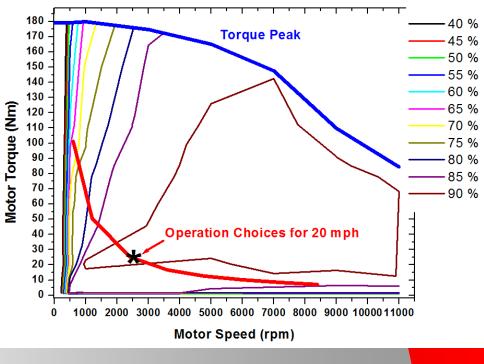
Milwaukee Tool V28 Li-Ion Battery Modules

Old Design (Side Pod)

7 strings x 12 Modules **6.5 kW-hr** @ 336 V_{nominal} 90 kg (198 lb)

New Design (Under-seat Pod)

8 strings x 13 Modules **8.2 kW-hr** @ 364 V_{nominal} 84 kg (185 lb)


Delphi EV1 Motor

University of Wisconsin SAE Snowmobile Team

100 kW continuous

AC Induction

≥ 90% efficient

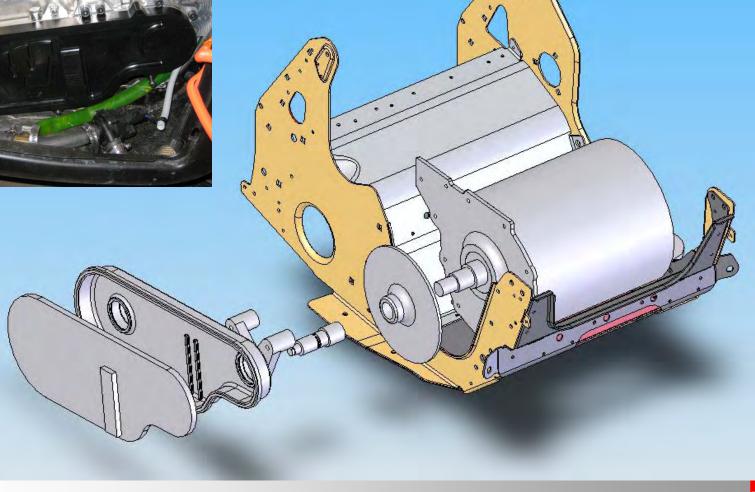
Motor Controller

University of Wisconsin SAE Snowmobile Team

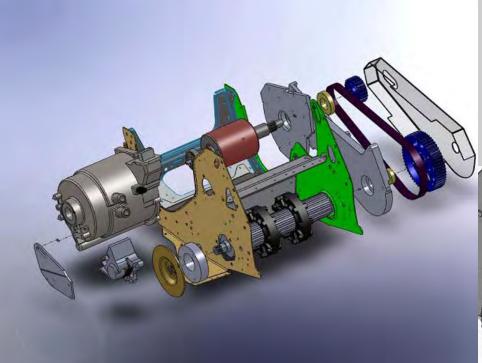
Azure DMOC445LC Motor Controller

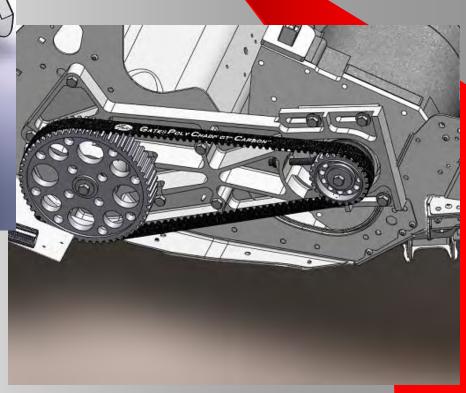
Powertrain Implementation

University of Wisconsin


SAE Snowmobile Team

	Cost (x1)	Strength (x1)	Simplicity (x1.5)	Reliability (x1)	Factor Sum
Belt	7	8	8	9	8.0
Chain	7	9	6	8	7.5
Gear	4	10	4	9	6.5


2008 Drivetrain



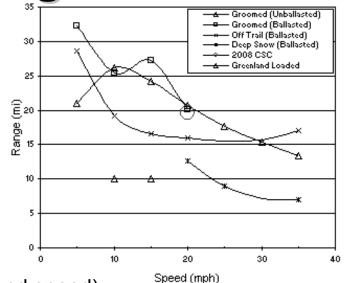
2009 Gen2 Drivetrain Concept

Chassis Change Next Year

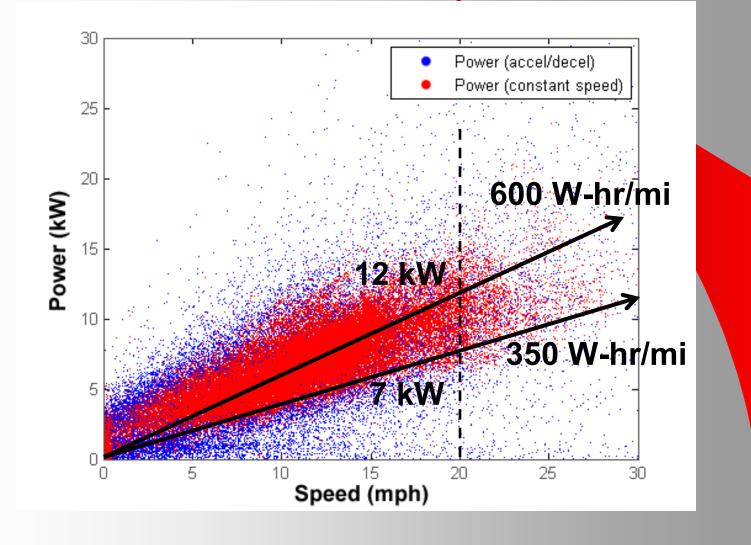
Vehicle Management

University of Wisconsin SAE Snowmobile Team

- Controls
 - Motor torque
 - Coolant circulation pump
 - Cruise control
 - Main battery contactors
 - Indicators/gauges

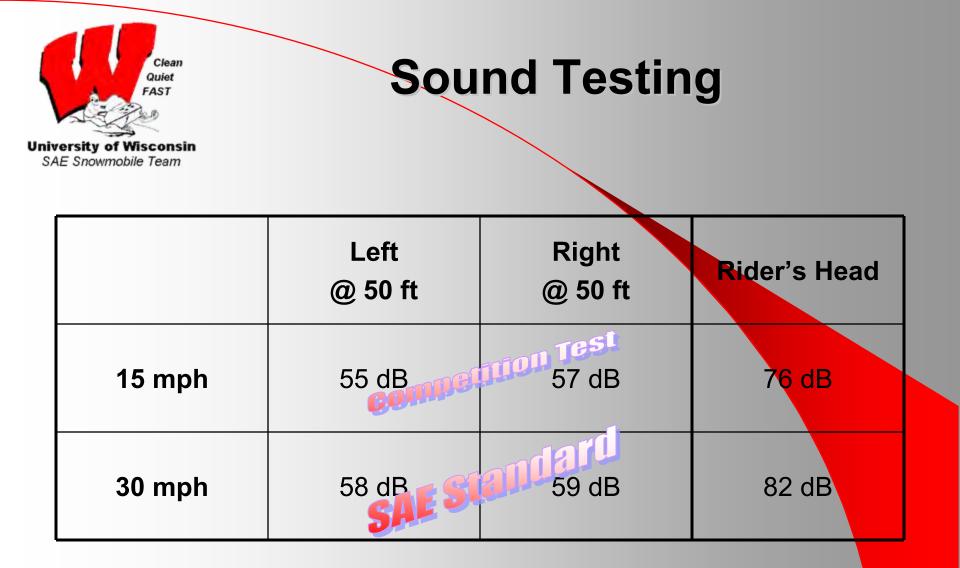

- Monitors:
 - Battery: V, I_{string}, T_{string}, HV isolation
 - Motor/Inverter. T_{actual}, T_{mot/inv}, faults
 - Vehicle Speed
 - Rider torque and brake cmd

MotoTron Powertrain Control Module Ratings Automotive/Marine -40° to 130 ° C 18 g Shock Load Immersion to 3 m underwater MATLAB Simulink Control Models MotoHawk Automatic Code Gen



- Pack Capacity
 - 19.6 A-hr \rightarrow 6.5 kW-hr
- Road load
 - Initial model [Auth] 4.6 kW at 20 mph
 - Testing (reduced pack and ballast)
 - Extremely variable based on snow conditions (and speed)
 - 6 kW at 20 mph (packed trail)
 - 7 kW at 20 mph (another packed trail)
 - 8 kW at 20 mph (deep snow)
 - 10 kW at 20 mph (6-8" soft packed snow)
- Predicted range
 - 20 mi absolute maximum (optimal conditions, full discharge)
 - 15 mi practical range (typical conditions, limited discharge)
- Achieved range
 - 18.4 mi (20 mph on hard-packed trail)
 - 360 W-hr/mi

2008 Range



2009 Range

- Pack Capacity
 - 24% increase in energy (6.5 \rightarrow 8.1 kW-hr)
- Road load
 - Sled unchanged from '08
 - Snow conditions much poorer than '08
 - Soft wet snow leads to 2x-3x road load
 - (comparable to pulling trailer)
- Predicted range
 - Optimal conditions: 40 km (24 mi)
 - Expected competition conditions: 26 km (16 mi)
- Achieved range
 - 12.4 mi
 - Extremely poor course conditions (8" standing water) 550 W-hr/mi
 - Batteries did not yield expected capacity (18.7 instead of 22.4 A-hr)

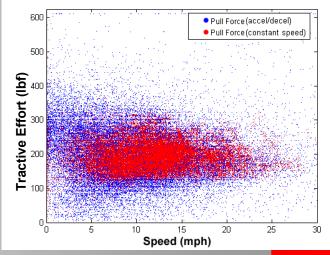
Based on mean peak sound level (dBA fast response) of 4-6 constant speed passes, background level ≤40 dB Snow conditions: 2" soft powder on crust above 4" of packed powder

Acceleration

Beats competition IC minimum of 12 s to 500 ft 2008: 8.34 s to 500 ft (2nd place overall – best non-studded) 2009: 6.90 s to 500 ft (predicted) Studded track with 96 Woody's Gold-Digger 1.075" studs

Clean Quiet AST

Handling


2008 results Within 0.09 s of best "Objective Handling" time (overall) Won "Subjective Handling" (overall)

Towing Capacity

SAE Snowmobile Team
 I raction dominated

- 2008 scores ordered by weight
 - Weight hurts every other aspect
 - \downarrow range, \downarrow acceleration, \downarrow handling, \downarrow load capacity
- Maximum tractive effort of electric drive
 - 275 kgf (650 lbf)
 - Maintained up to 35 mph (unlike DC motor solutions)
 - 206 kgf (455 lbf) officially achieved
- Solutions
 - Adjust weight balance aft
 - Moved more batteries under seat
 - Improve coefficient of traction
 - Studded track
- How necessary are pull forces >>300?

Battery Management

University of Wisconsin SAE Snowmobile Team Estimate state-of-charge (SOC)

•Battery terminal voltage model

Voltage source

Series resistance

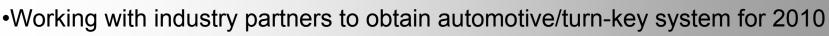
•R based on temperature

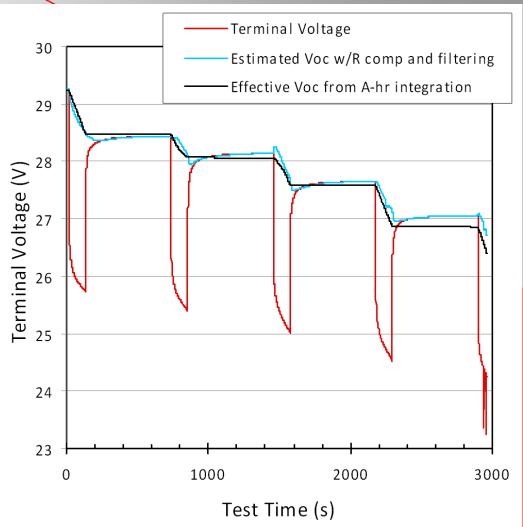
Series RC element

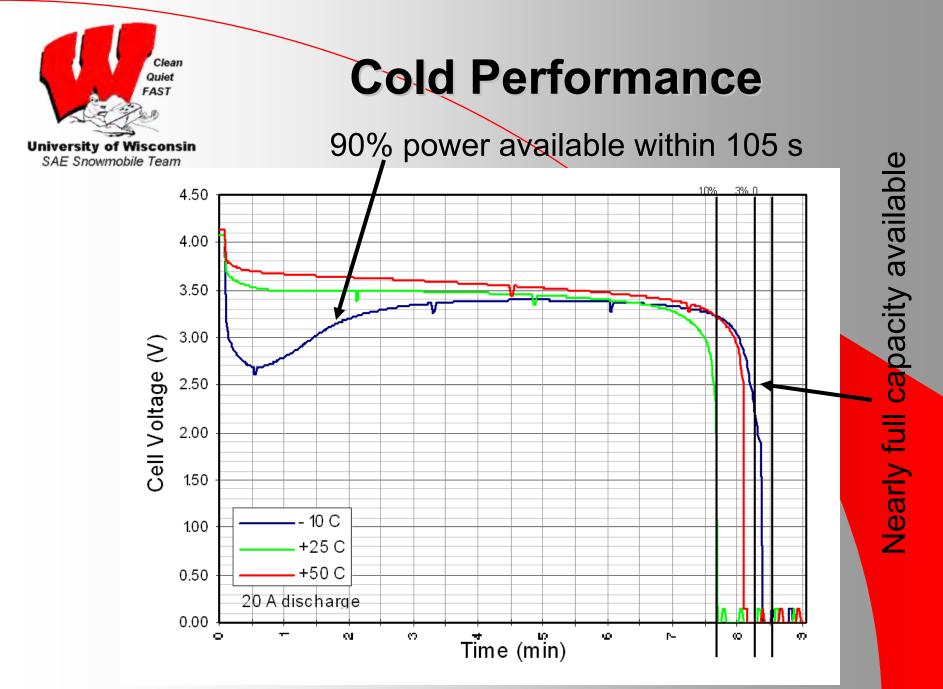
•τ,R based on temperature

Estimate SOC based on

•V_{terminal}


I_{instantaneous}, I_{LPF}
Battery temperature


•Outputs


SOC, DTE indications

•Warn rider at 10%

•Terminate operation at 3%

Rated by manufacturer at -10°C

Goal Recap

Parameter	Competition Goal	UW Goal	UW Achieved
Range	≥ 16 km (10 mi)	≥ 32 km (20 mi)	20 km (12.4 mi)
Top Speed (IC goal)	≥ 70 km/hr (45 mph)	≥ 140 km/hr (90 mph)	≥ <mark>122 km/hr</mark> (76 mph)
Acceleration (150 m)	≤12 s	≤10 s	6.9 s
Emissions	Zero	Zero	Zero
Weight		≤ 340 kg (750 lb)	320 kg (709 lb)
Drawbar Pull		≥ 250 kgf (550 lbf)	207 kgf (455 lbf)
Noise (IC)	≤ 78 dB	≤ 60 dB	56 dB

2008 Greenland Summer Season

Questions?

