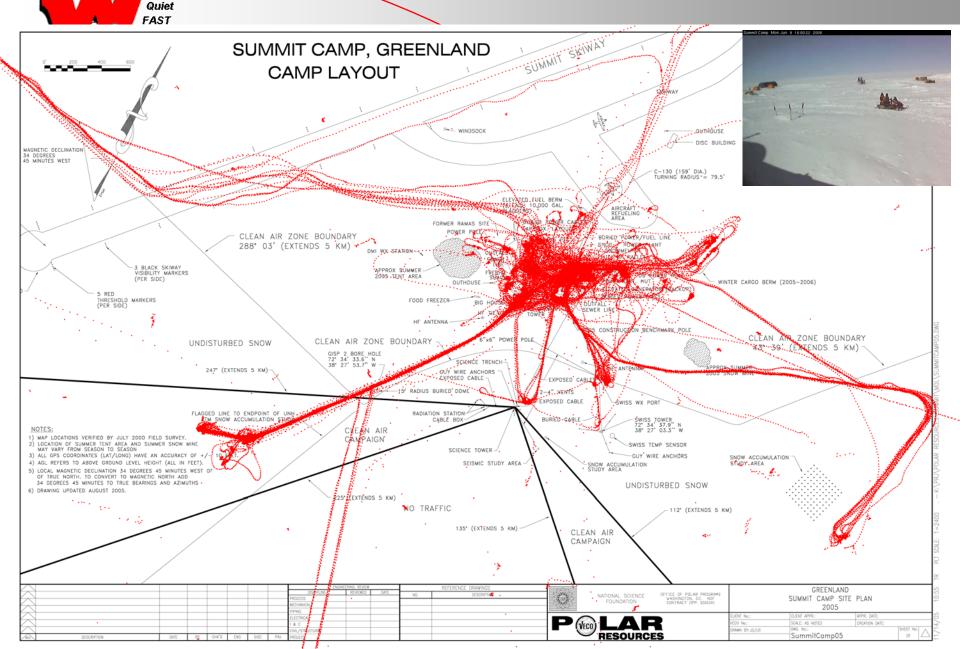


University of Wisconsin Madison

2010 SAE Clean Snowmobile Challenge

Electric Snow Machine Design Presentation

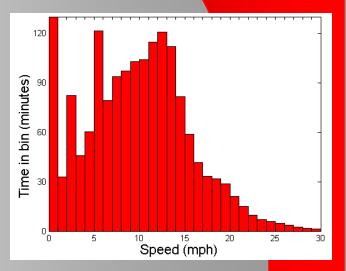


Presented by:

Jake Mauermann Matt Schmitz

Clean Quiet FAST University of Wisconsin	Desig	n Emphas	sis "Operator"
SAE Snowmobile Team Parameter	NSF Emphasis	CSC Emphasis	UW Emphasis
Range	Primary	Secondary (100 points)	Primary
Towing Capacity	Primary	Secondary (100 points)	Primary
Weight	Secondary	Secondary (100 points)	Secondary
Handling	Minor (safety only)	Secondary (100 points)	Secondary
Acceleration	None	None	Secondary
Noise	None	Primary (150 points)	Secondary
Cost	Primary	Minor (50 points)	Secondary
Durability and Maintainability	Primary	Secondary (100 points)	Primary

Greenland Summer '08 Trial



Clean

Greenland 2008 Summary

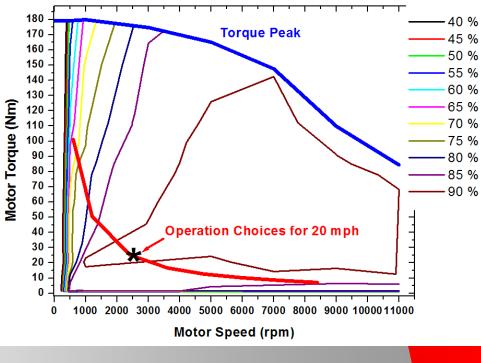
- Most trips are short
 - Typical trip: Big House or Balloon Barn to Sat Camp
 - 2.2 km (1.4 mi) round-trip
 - Trip length: (of 72 trips >0.1 mi in a ten day period)
 - 47 ≥0.5 mi, 14 ≥1.0 mi, 6 ≥2 mi, 3 ≥3 mi.
 - Longest trips 6 mi round-trip
- Total usage
 - 341 km (212 mi) in 57 days (4 mi daily average)
 - 26 hr of operation (non-zero speed)
 - Mean speed 13 km/hr (8 mph)
- Practical range
 - 5-10 mi with a 1500 lb towed payload
 - 2x-3x reduction from maximum unloaded range

Specific Design Goals

University of Wisconsin

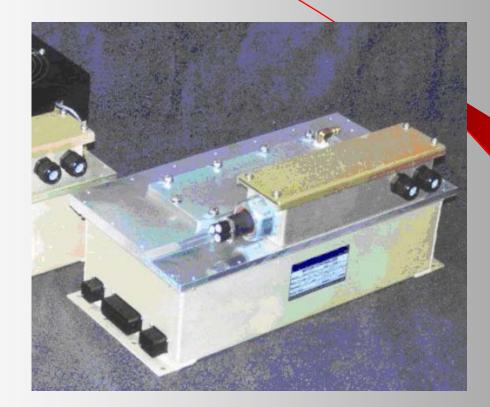
SAE Snowmobile Team

Parameter	Competition Goal	UW 2010 Goal	UW 2010 Achieved
Range	≥ 16 km (10 mi)	≥ 40 km (24 mi)	13 km (8.2 mi)
Top Speed (ZE goal)	≥ 70 km/hr (20 mph)	≥ 120 km/hr (76 mph)	<mark>≥ 120 km/hr</mark> (76 mph)
Acceleration (150 m)	≤12 s	≤10 s	6.9 s
Emissions	Zero	Zero	Zero
Weight		≤ 320 kg (700 lb)	289 <mark>kg</mark> (637 <mark>lb)</mark>
Drawbar Pull		≥ 250 kgf (550 lbf)	250 k <mark>gf</mark> (550 lb <mark>f)</mark>
Noise (IC)	≤ 78 dB	≤ 60 dB	57 dB


Delphi EV1 Motor

University of Wisconsin SAE Snowmobile Team

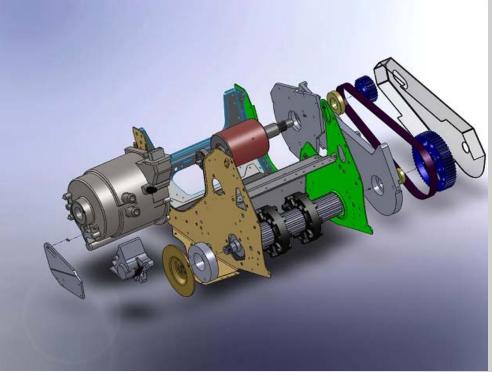
100 kW continuous

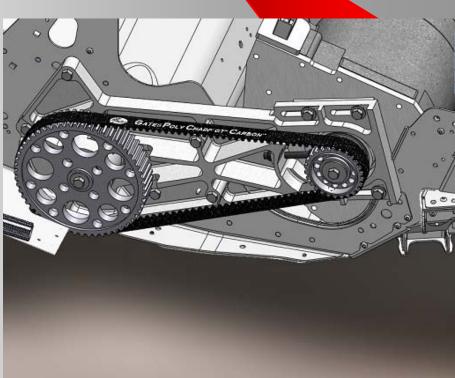

AC Induction

≥ 90% efficient

Motor Controller

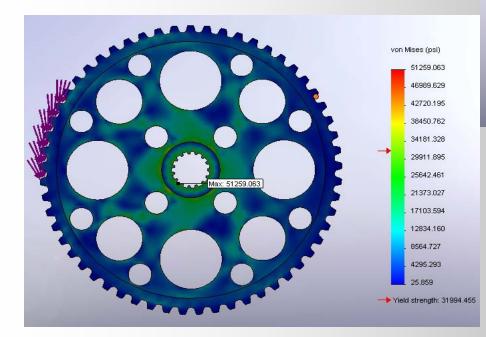
Azure DMOC445LC Motor Controller

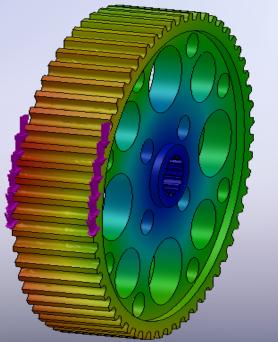

Powertrain Implementation


2009 Design

	Cost (x1)	Strength (x1)	Simplicity (x1.5)	Reliability (x1)	Factor Sum
Belt	7	8	8	9	8.0
Chain	7	9	6	8	7.5
Gear	4	10	4	9	6.5

2010 Gen2 Drivetrain




2010 Gen2 Drivetrain FEA

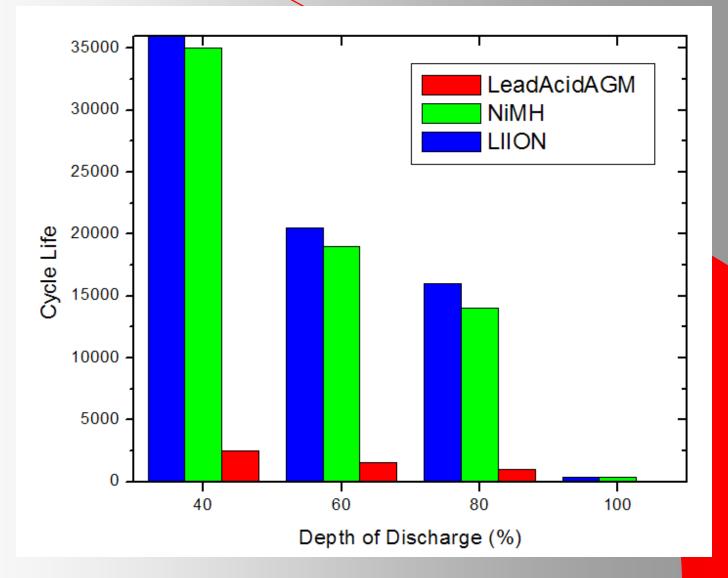
University of Wisconsin SAE Snowmobile Team

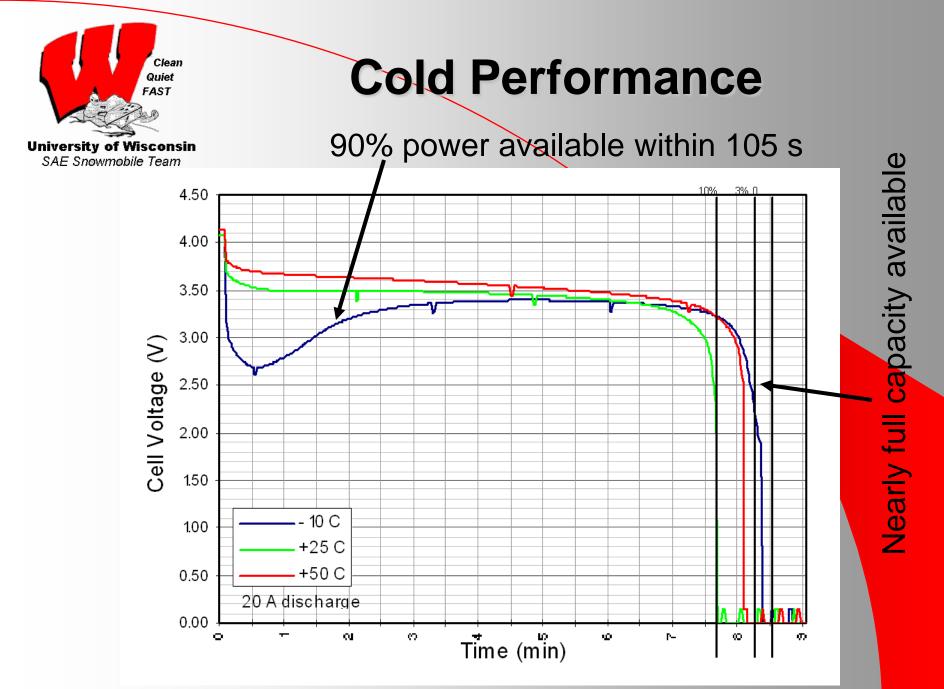
•Tested under static axial load of 2010 N (50% greater than EV1 max)

Tested using dynamic load of 1423 N*m

URES (in) 0.0105955 0.0097125 0.0088296 0.0079466 0.0070636 0.00052977 0.0.0044148 0.0005318 0.0005489 0.0007659 0.0007659 0.0008830 0.0008830 0.0008830

Clean Quiet 2010 Gen2 Drivetrain Implementation





Clean Quiet FAST University of Wisconsin SAE Snowmobile Team	Battery Selection		
Nickel Metal Hydride	Lead Acid	Lithium-lon	
1.25 Volts/Cell	2.12 Volts/Cell	4.00 Volts/Cell	
364 V \rightarrow 291 Cells	364 V \rightarrow 172 Cells	364 V → 91 Cells	

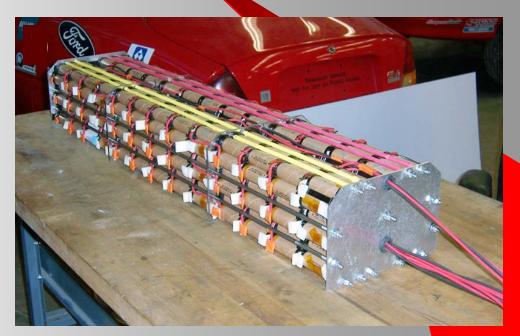
Battery Selection

Rated by manufacturer at -10°C

Intended 2010 Battery Pack

- Pack built with A123 batteries
 - 356 Volts_{nominal}
 - Integrated BMS
 - Monitor and equalize cells
 - Aluminum casing

- Pack Capacity
 - 33% increase in energy (5.46 \rightarrow 8.2 kW-hr)
 - 45% increase in charge $(15 \rightarrow 27.6 \text{ A-hr})$
- Predicted range
 - Optimal conditions: 42 km (26 mi)
 - Expected competition conditions: 32 km (20 mi)



Milwaukee Tool V28 Li-Ion Battery Modules

Old Design (Side Pod)

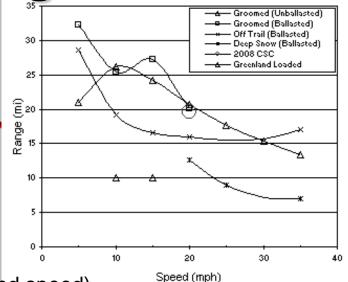
7 strings x 12 Modules **6.5 kW-hr** @ 336 V_{nominal} 90 kg (198 lb)

New Design (Under-seat Pod)

6 strings x 13 Modules **5.46 kW-hr** @ 364 V_{nominal} 63.5 kg (140 lb)

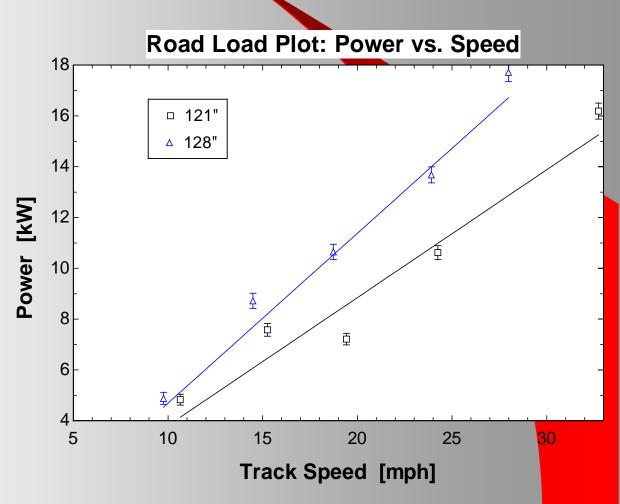
Vehicle Management

University of Wisconsin SAE Snowmobile Team


- Controls
 - Motor torque
 - Coolant circulation pump
 - Cruise control
 - Main battery contactors
 - Indicators/gauges

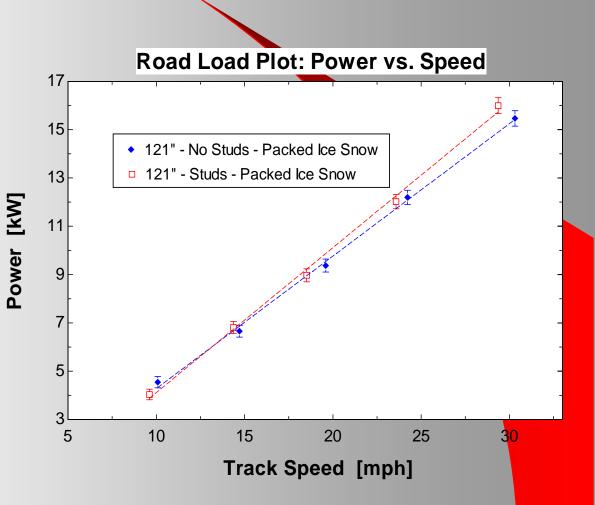
- Monitors:
 - Battery: V, I_{string}, T_{string}, HV isolation
 - Motor/Inverter. Tactual, T_{mot/inv}, faults
 - Vehicle Speed
 - Rider torque and brake cmd
- MotoTron Powertrain Control Module Ratings Automotive/Marine -40° to 130 ° C 18 g Shock Load Immersion to 3 m underwater MATLAB Simulink Control Models MotoHawk Automatic Code Gen

- Pack Capacity
 - 15 A-hr \rightarrow 5.46 kW-hr
- Road load
 - Initial model [Auth] 4.6 kW at 20 mph
 - Testing (reduced pack and ballast)
 - Extremely variable based on snow conditions (and speed)
 - 6 kW at 20 mph (packed trail)
 - 7 kW at 20 mph (another packed trail)
 - 8 kW at 20 mph (deep snow)
 - 10 kW at 20 mph (6-8" soft packed snow)
- Predicted range
 - 15 mi absolute maximum (optimal conditions, full discharge)
 - 10 mi practical range (typical conditions, limited discharge)
- Achieved range
 - 8.2 mi (20 mph on very sloppy trail)
 - 12 kW at 20 mph


2010 Range

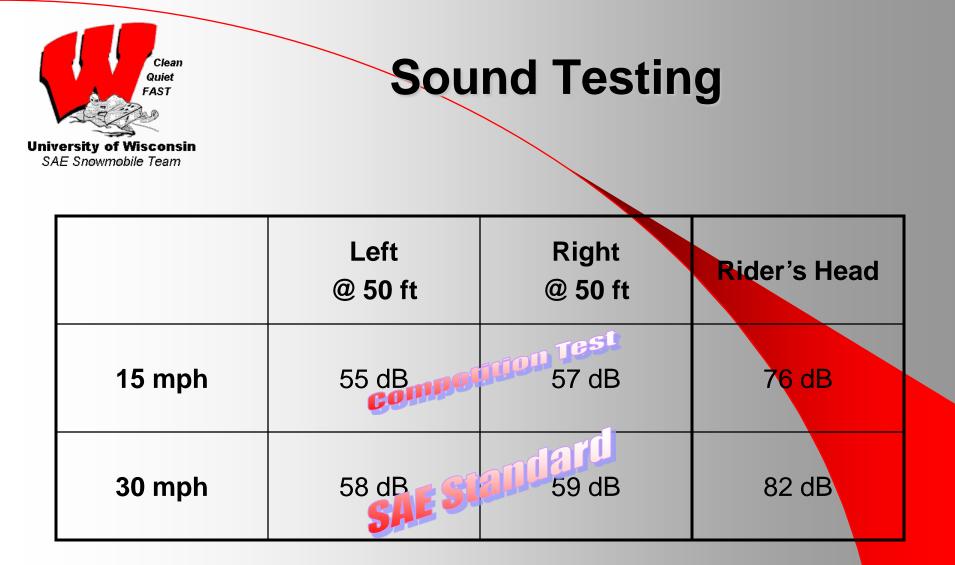
Driveline Efficiency Testing

- Monitored Amps drawn and motor torque
- 128" track length standard on 2007 Polaris FST LX
- Found a 22% difference in power required to drive at 25 mph



SAE Snowmobile Team

- Tested same track studded vs. nonstudded
- Found a 4% difference in power required to drive at 25 mph
- This impact was weighed against the positive aspects of studs


Effect of Studs

Towing Capacity

- Traction dominated
 - 2008 scores ordered by weight
 - 2009 switched to studded track (won event)
- Maximum tractive effort of electric drive
 - 275 kgf (650 lbf)
 - Maintained up to 35 mph (unlike DC motor solutions)
 - 260 kgf (575 lbf) officially achieved
- Increased effort
 - Shifted all batteries aft to change weight balance
 - Again utilizing studded track

Based on mean peak sound level (dBA fast response) of 4-6 constant speed passes, background level ≤40 dB Snow conditions: 2" soft powder on crust above 4" of packed powder

Handling

2009 results

5.25 s faster than any other E-sled last year (objective event) Won "Subjective Handling" (overall)

Goal Recap

Parameter	Competition Goal	UW 2010 Goal	UW 2010 Achieved
Range	≥ 16 km (10 mi)	≥ 40 km (24 mi)	13 km (8.2 mi)
Top Speed (ZE goal)	≥ 70 km/hr (20 mph)	≥ 120 km/hr (76 mph)	≥ 120 km/hr (76 mph)
Acceleration (150 m)	≤12 s	≤10 s	6.9 s
Emissions	Zero	Zero	Zero
Weight		≤ 320 kg (700 lb)	289 kg (637 lb)
Drawbar Pull		≥ 250 kgf (550 lbf)	261 k <mark>gf</mark> (575 lb <mark>f)</mark>
Noise (IC)	≤ 78 dB	≤ 60 dB	57 dB

Questions?

Battery Management

University of Wisconsin SAE Snowmobile Team Estimate state-of-charge (SOC)

•Battery terminal voltage model

Voltage source

Series resistance

•R based on temperature

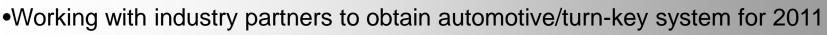
•Series RC element

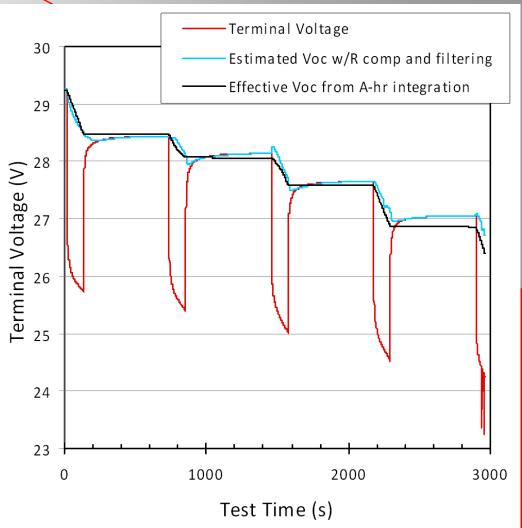
•τ,R based on temperature

Estimate SOC based on

•V_{terminal}

• I_{instantaneous}, I_{LPF}


•Battery temperature


Outputs

•SOC, DTE indications

•Warn rider at 10%

•Terminate operation at 3%

