

University of Wisconsin Madison

2011 SAE Clean Snowmobile Challenge

Electric Snow Machine Design Presentation

Presented by:

Shawn Spannbauer Kim Ruiz

Clean Quiet FAST				
SAE Snowmobile Team Parameter	NSF Emphasis	CSC Emphasis	UW Emphasis	
Range	Primary	Primary (100 points)	Primary	
Towing Capacity	Primary	Primary (100 points)	Primary	
Weight	Secondary	Secondary (100 points)	Secondary	
Handling	Minor (safety only)	Secondary (100 points)	Secondary	
Acceleration	None	Minor (50 points)	Secondary	
Noise	None	Primary (150 points)	Secondary	
Cost	Primary	Minor (50 points)	Secondary	
Durability and Maintainability	Primary	Secondary (100 points)	Primary	

Greenland 2008/2009 Summary

- Total usage
 - 948 km (589 mi) in ~120 days (5 mi daily average)
 - 26 hr of operation in 2008 (non-zero speed)
 - Average speed 13 km/hr (8 mph) in 2008
- Most trips are short
 - Typical trip: Big House or Balloon Barn to Sat Camp
 - 2.2 km (1.4 mi) round-trip
 - Trip length: (of 72 trips >0.1 mi in a ten day period)
 - 47 ≥0.5 mi, 14 ≥1.0 mi, 6 ≥2 mi, 3 ≥3 mi.
 - Longest trips 6 mi round-trip
- Practical range
 - 5-10 mi with a 1500 lb towed payload
 - 2x-3x reduction from maximum unloaded range

University of Wisconsin SAE Snowmobile Team

University of Wisconsin SAE Snowmobile Team

Clean Quiet FAST

Parameter	Competition Goal	WW 2010 Achieved	UW 2011 Goal	
Range	≥ 16 km (10 mi)	14.2 km (8.8 mi)	≥ 40 km (24 mi)	
Top Speed (ZE goal)	≥ 70 km/hr (20 mph)	122km/hr (76 mph)	≥ 96 km/hr (60 mph)	
Acceleration (150 m)	≤12 s	8.7 s	≤7 s	
Weight		289 kg (637 lb)	≤ 313 <mark>kg</mark> (650 lb <mark>)</mark>	
Drawbar Pull		275 kgf (607.0 lbf)	≥ 400 kg <mark>f</mark> (880 lbf)	
Noise (IC)	≤ 78 dB	64 dB	≤ 60 dB	

Delphi EV1 Motor

University of Wisconsin SAE Snowmobile Team

AC Induction

100 kW continuous

200 40 % **Torque Peak** 180 45 % 50 % 160 55 % 140 60 % Motor Torque (Nm) 65 % 120 70 % 100 - 75 % 80 % 80 750 watts/mile at 20 mph 85 % 60 90 % 350 watts/mile at 20 mph 40 20 0 -20 -1000 0 1000 2000 3000 4000 5000 6000 7000 8000 900010000100012000 Motor Speed (rpm)

≥ 90% efficient

Motor Controller

Azure DMOC445LC Motor Controller

Clean Quied FAST University of Wisconsin SAE Snowmobile Team							
	Cost (x1)	Strength (x1)	Simplicity (x1.5)	Simplicity (x1.5) (x1) Factor (x1) Su		tor m	
Belt	7	8	8	9	8.0		
Chain	7	9	6	8	7.5		
Gear	4	10	4	9	6.5		

Battery Chemistry Comparison

University of Wisconsin SAE Snowmobile Team

	Pb-Acid	NiMH	Li-lon	Petrol
Energy Density (Gravimetric) (Wh/kg)	30-40	40-120	100-180	12000
Energy Density (Volumetric) (Wh/L)	60-75	140-400	200-300	9000
Power Density (W/kg)	180	300-1000	1000-5000	
Cycle efficiency (% charge/discharge)	70-92%	65-80%	95-99%	
Cycle life (total cycles)	500-800	500-1000	500-15000	1
Self-discharge (%/month)	3-20%	~30%	5-10%	
Current cost (\$/Wh)	0.15-0.30	0.30-0.60	0.50-2.50	<0.0001

2011 Battery Pack

- Pack built with A123 batteries
 - 347 Volts_{nominal}
 - 10 parallel cells, 23 A-hr
 - Integrated BMS
 - Monitor and equalize cells
 - 1/2 " Polycarbonate Shell
- Pack Capacity
 - 7.97 kW-hr
- Predicted range
 - Optimal conditions: 42 km (26 mi)
 - Expected competition conditions: 32 km (20 mi)

Vehicle Management

University of Wisconsin SAE Snowmobile Team

- Controls
 - Motor torque
 - Coolant circulation pump
 - Cruise control
 - Main battery contactors
 - Indicators/gauges

- Monitors:
 - Battery: V. I_{string}, T_{string}, HV isolation
 - Motor/Inverter. τ_{actual}, T_{mot/inv}, faults
 - Vehicle Speed
 - Rider torque and brake cmd

MotoTron Powertrain Control Module Ratings Automotive/Marine -40° to 130 ° C 18 g Shock Load

Immersion to 3 m underwater MATLAB Simulink Control Models MotoHawk Automatic Code Gen

2011 Range

University of Wisconsin SAE Snowmobile Team

- Pack Capacity
 - 7.97 kW-hr

Quiet

AST

- Road load
 - Initial model [Auth] 4.6 kW at 20 mph
 - Testing (reduced pack and ballast)
 - Extremely variable based on snow conditions (and speed)
 - 6 kW at 20 mph (packed trail)
 - 7 kW at 20 mph (another packed trail)
 - 8 kW at 20 mph (deep snow)
 - 10 kW at 20 mph (6-8" soft packed snow)
- Predicted range
 - 42 km (26 mi) absolute maximum (optimal conditions, full discharge)
 - 32 km (20 mi) practical range (typical conditions, limited discharge)
- Achieved range
 - 20.8 mi (20 mph on hard packed snow)

8

6

4

5

10

¥

Φ

15

₫

20

Track Speed [mph]

25

30

difference in power required to drive at 25 mph

- Tested same track studded vs. nonstudded
- Found a 4% difference in power required to drive at 25 mph
- This impact was outweighed by the positive aspects of studs

Effect of Studs

Towing Capacity

- Traction dominated
 - 2008 scores ordered by weight
 - 2009 switched to studded track (won event)
- Increase tractive effort
 - Continued using studded track
 - Shifted batteries back
 - Geared motor down

- Maximum tractive effort of electric drive
 - ~900 lbf at yesterday's draw bar pull event
 - Maintained up to 20 mph (unlike DC motor solutions)

2010 results

16.99 s faster than any other E-sled (objective handling)Second fastest snowmobile overall (objective handling)

Questions?

Battery Management

University of Wisconsin SAE Snowmobile Team Estimate state-of-charge (SOC)

•Battery terminal voltage model

- Voltage source
- Series resistance

•R based on temperature

Series RC element

•τ,R based on temperature

Estimate SOC based on

 $\bullet V_{terminal}$

• I_{instantaneous}, I_{LPF}

Battery temperature

•Outputs

- •SOC, DTE indications
- •Warn rider at 10%
- •Terminate operation at 3%

•Working with industry partners to obtain automotive/turn-key system for 2011

Fuel Savings Analysis

Gasoline-Powered Snow Machine

- Estimated 10 mpg
- 0.1 gallon/mile
- Electric Snow Machine
 - 350-500 W-hr/mi
 - Diesel generator efficiency
 - 15 kW-hr/gallon
 - 0.02-0.05 gallon/mile
- Savings over 200 mi
 - 10-20 gallons
 - @ 6 lbs/gallon \rightarrow weight of sled in ~5-10 years
- Other benefits
 - Diesel genset also provides building heat, snow melting
 - Reduced emissions → Enhanced research platform
 - Stationary source instead of mobile source pollution
 - Improved after-treatment possible on genset
- Alaska