McGill Electric Snowmobile Team

"Wendigo"

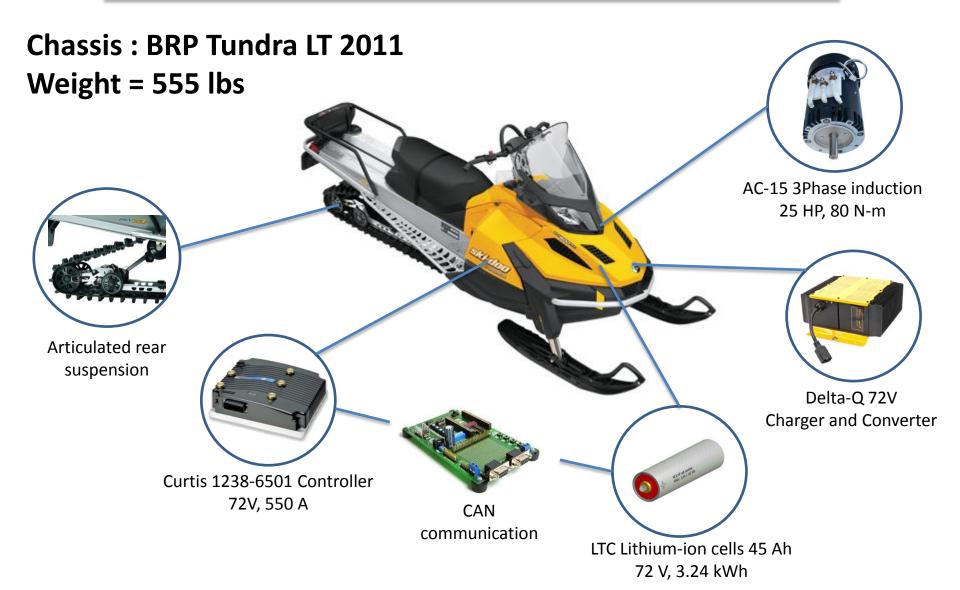
Presented by Romain Roux Charles Vincent

March 8 th 2012

Design objectives

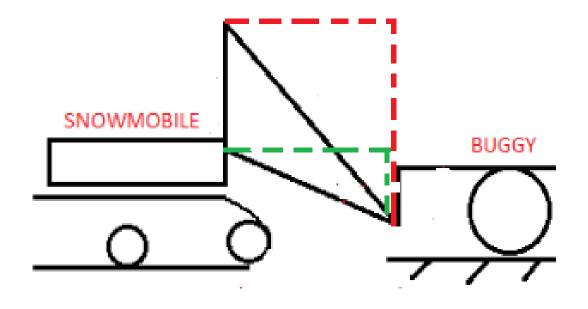
Wendigo 2011

Strong points:


- Overall Value
- Weight
- Handling

Wendigo 2012

Improvements:


- Draw bar pull
- Noise attenuation
- Range
- Acceleration

Design Overview

Draw bar pull

- Maximizing pulling capacities of sled
- Engineered elevated rear hitch module
 - → Increase traction

Pulling force to applied weight ratio

	McGill University			
	Total Mass	Rear Mass	Pull Force	Rear + 60 kg Force ratio
	Kg	Kg	N	N/Kg
AVG	236	114	2054	12

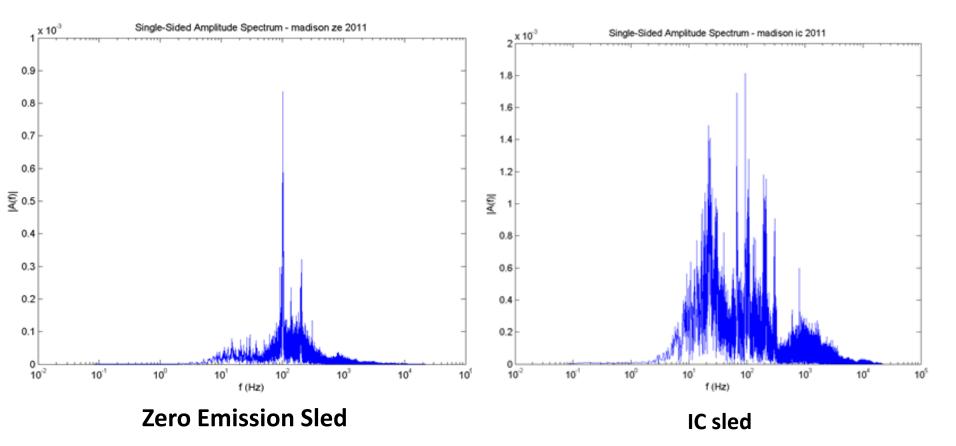
Potential increase of 12N / kg of weight
 Maximize weight at the rear

Design and development

Assembly:

Benefits: +88 lbs of pulling force (expected)

Noise attenuation


 Significant issue across both IC and ZE platforms

 Reduce vibration propagation

Spectral Analysis of 2011 CSC

University of Wisconsin - Madison

Noise Testing

1) Vibrator Sound Testing

• Gas tank experiment

Modifications	Sound level (dB)
Unmodified	105.7
Viscoelastic gel	103.1
Damping pads	98.0

2) Accelerometer and Noise Vibration Tests on Bare Chassis

- Motor imbalance setup
- Identify vibration hotspots
- vibration

amplitudes by 15%

Implementation

- Sound Insulation
- Vibration Isolation
- Vibration Damping

Before

After

- 2011 Wendigo
 2012 Wendigo
 performance:
 performance:
- 7.81 miles on a 6 year old pack
- 60% of original capacity

- 20 new LTC cells
- Expected mileage: 13.03 (+5.22 miles)

Why 72 volts?

	72 volts (20 cells)	93.6 volts (26cells)
Range	13.03 miles	16.94 miles
Weight(kg)	30	39
Cells Cost	\$6000	\$7800
Energy	3240 Wh	4214 Wh

Table 1 - Battery pack comparison

Loaded Acceleration

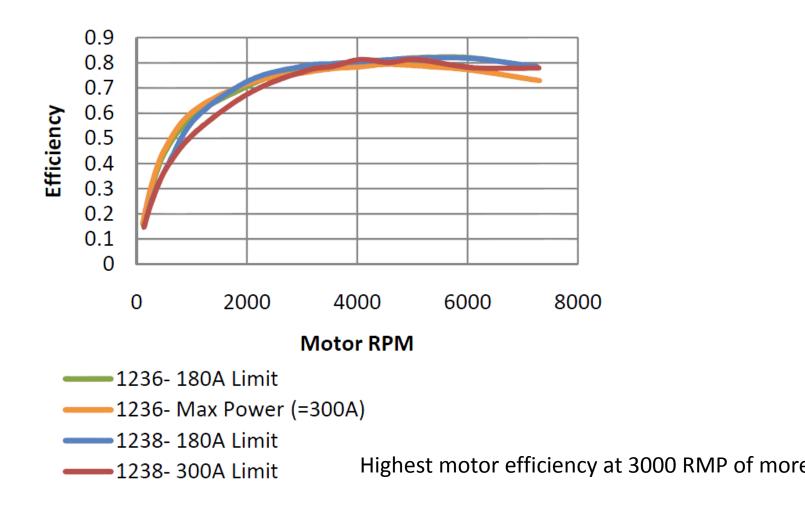
Drive Ratio	72V	93.6V
2	22.55 s	21.71 s
3	19.7 s	17.85 s
4	19.13 s	17.48 s
5	19.02 s	17.72 s
6	19.27 s	17.95 s
7	19.84 s	18.69 s

 Table 2 – Loaded acceleration time simulations

Sled usage in Greenland:

• Average trips, loaded sled: 3.7 miles a day

• Effective average trips, unloaded sled: 11.1 miles a day


	72 volts (20 cells)	93.6 volts (26cells)
Range	13.03 miles	16.94 miles
Weight(kg)	30	39
Cells Cost	\$6000	\$7800
Energy	3240 Wh	4214 Wh

The extra benefit to cost is hard to justify

Powertrain:

• Extensive dynamometer testing

→ Acquired maps for current, torque, efficiency, slip gain, power, and other parameters.

Graph 1 – Motor efficiency versus RPM

Drivetrain

- Fixed gear ratio of 3 to 1 :
- \rightarrow Translates to 20mph at 3000 RPM
- →Simpler packaging (stock chain case)
- \rightarrow Ease of maintenance
- \rightarrow High reliability
- \rightarrow Good acceleration

Loaded acceleration

PSAT simulations taking into account:

- Snow friction
- Aerodynamic drag
- Traction limits
- 800 lbs trailer load over 500 ft

Loaded acceleration

Loaded Acceleration		
Drive Ratio	72V	
2	22.55 s	
3	19.7 s	
4	19.13 s	
5	19.02 s	
6	19.27 s	
7	19.84 s	

 Table 2 – Loaded acceleration time simulations

Conclusion

Improvement	Solutions
Draw bar pull	Elevated rear hitch design
 Noise attenuation 	Damping pads
 Range & Acceleration 	Improved utility and performances

Perfect for the Arctic !

Thank you!

