
Optimization of Wendigo 2013 for scientists in North and South Poles

Presented by

Gurdeepak Singh Ali Najmabadi

March 07, 2013

Main design criteria

- Chassis selection
- Range
- Power & Performance
- Affordability
- Serviceability
- Ergonomics
- User friendliness
- Low environmental impact

Chassis selection

Selection criteria

- Low cost affordable
- Light weight better power/weight & handling
- Short track less drag

Ski Doo MXZ Sport meets all of the criteria

- Primarily depends on battery pack capacity
- LTC's 45Ah cells chosen due to their
 - High durability & ruggedness
 - Large cell size, leading to lesser components in battery pack
- Two battery pack sizes possible in available space:
 - One pack of 20 cells, OR
 - Two packs of total 26 cells

Comparison of two possible battery pack configurations

	72 volts (20 cells)	93.6 volts (26cells)
Range (miles)	10	14
Weight(kg)	30	39
Cells Cost	\$6000	\$7800
Energy	3240 Wh	4214 Wh

Table 1 - Battery pack comparison

Loaded Acceleration					
Drive Ratio	72V	93.6V			
2	22.55 s	21.71 s			
3	19.7 s	17.85 s			
4	19.13 s	17.48 s			
5	19.02 s	17.72 s			
6	19.27 s	17.95 s			
7	19.84 s	18.69 s			

Table 2 - Loaded acceleration time simulations

Sled usage in Greenland

based on data from University of Wisconsin, Madison

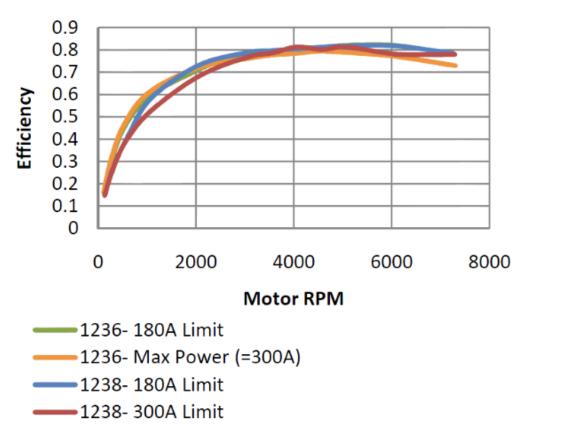
- Loaded sled average trips: 3.7 miles a day
- Unloaded sled effective average trips: 11.1 miles a day
- Charging capability at the sampling area

20 Cell, 72V battery pack was selected for

- Lower cost
- Lower weight
- Easier maintenance and serviceability

Energy management

 In order to efficiently use the available energy, the powertrain and auxiliary components selected and/or optimized for maximum efficiency


• E.g., 3 Watt LED headlights were used instead of

stock 120 Watt headlights

- Extensive dynamometer testing to maximize efficiency
 - Acquired data for current, torque, efficiency, slip gain, power, and other parameters

 HPEV AC-15 motors with Curtis 1238 controller produce 28kW & 84Nm peak torque for good towing capacity

Highest motor efficiency at 3000+ RPM

Graph 1 – Motor efficiency versus RPM

Powertrain design based on simulation results

PSAT simulations taking into account:

- Snow friction
- Aerodynamic drag
- Traction limits
- 800 lb trailer load over 500 ft
- Validated snowmobile models

Drive ratio selection

Loaded Acceleration		
Drive Ratio	72V	
2	22.55 s	One step-down ratio
3	19.7 s	(using stock gearbox)
4	19.13 s	
5	19.02 s	Two step-down ratios
6	19.27 s	(using stock gearbox
7	19.84 s	& belt drive/CVT)

Table 3 - Loaded acceleration time simulations

Drive ratio selection

Loaded Acceleration				
Drive Ratio	72V			
2	22.55 s			
3	19.7 s			
4	19.13 s			
5	19.02 s			
6	19.27 s			
7	19.84 s			

Table 3 - Loaded acceleration time simulations

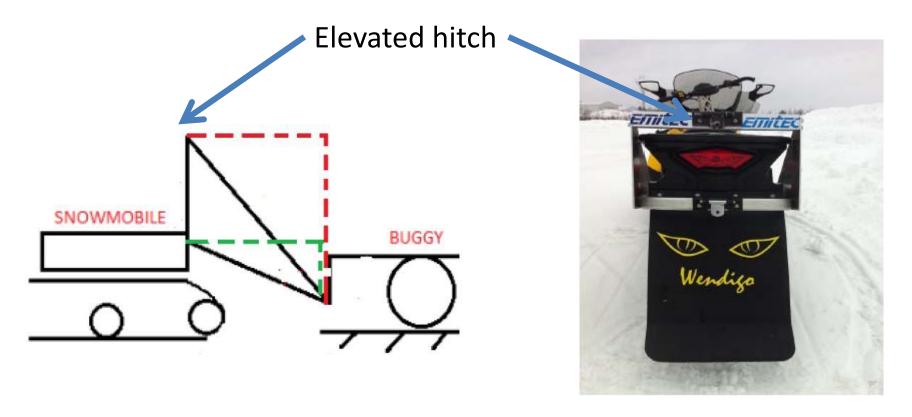
One step-down ratio (using stock gearbox)

- Less number of components – more reliable and cheaper
- Engine bay space available for battery pack – better weight distribution & easier packaging

Drivetrain

Fixed gear ratio of 3 to 1 was selected

- Translates to 20mph at approx. 3000 RPM (high powertrain efficiency range)
- Simpler packaging (stock chain case)
- Ease of maintenance
- High reliability
- Lower cost
- Good acceleration

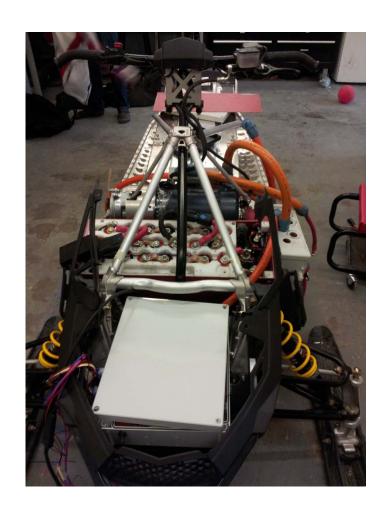

Depending on snow conditions, short track can reduce the towing capacity, which is compensated by the use of an elevated hitch.

Relation between towing capacity and normal force on track

McGill University						
	Sled's total mass (kg)	Sled's rear mass(kg)	Pull force (N)	Pull force/ Mass on track (N/kg) (With 85kg driver)		
Average of past competitions	236	114	2054	10		

- Pulling force of approx. 10N/kg of mass on track
- Need to increase normal force on track to get higher towing capacity

Elevated hitch ⇒ More normal load on track ⇒ Higher pulling capacity


Affordability

- Cost is one of the main driving factor in Wendigo's design – approx. \$15,000
- Examples of cost reductions with minimum compromises:
 - Low cost short track, light weight chassis
 - One battery pack with high capacity large cells to keep number of components low
 - Direct coupling of motor
 - Minimum modifications to the stock chassis

Serviceability

- Modularity
 - Electronics box
 - Controller box
 - Accumulator box
- Easy maintenance
- Readily available spare parts

Increases Safety & Saves time

User friendliness

- Ergonomics
- Display
- Weight distribution
- Cargo Space
- Ignition Sequence
- User switches/inputs same as an IC sled

+ Zero Emission!

- Sources of pollution:
 - Brake fluids
 - Chain case oil
 - Bearing Grease
 - Dead cells
 - Noise

+ Zero Emission!

- Sources of pollution:
 - Brake fluids
 - Chain case oil
 - Bearing Grease
 - Dead cells
 - Noise

Major sources of pollution

Dead cells

- Previous generation of LTC cells lasted 7 years
- Based on dynamometer testing the 7 year old cells were at 70% of their original capacity
- Slightly higher cost of LTC cells is justified due to their durability and reliability

Major sources of pollution

Noise

- Track and vibrating chassis components are the main sources of noise in electric sleds
- Damping material is used in between fastened components and on exposed chassis surface to attenuate noise
- Stock studded track can be replaced with a Silentrack without compromising towing capacity thanks to the elevated hitch design

Conclusion

The Wendigo Advantage

- Chassis: light weight, comfortable & affordable
- Range: 10+ miles, reliable energy accumulator
- Performance: low cost, simple and powerful powertrain
- Affordable: approx. \$15,000 MSRP
- Serviceability: modular and simple design, spares readily available
- Ergonomics & User friendliness: minimum modifications during electrical conversion and performs similar to the stock sled
- Low environmental impact: zero emissions & quiet operation

Questions

